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Abstract
We study the endogenous participation problem when bidders are characterized by 
a two-dimensional private information on valuations and participation costs in first-
price auctions. Bidders participate whenever their private costs are less than or equal 
to the expected revenue from participating. We show that there always exists an 
equilibrium in this general setting with two-dimensional types of ex-ante heteroge-
neous bidders. When bidders are ex-ante homogeneous, there is a unique symmetric 
equilibrium, but asymmetric equilibria may also exist. We provide conditions under 
which the equilibrium is unique (not only among symmetric ones). In the symmet-
ric equilibrium, we show that the equilibrium cutoff of participation costs described 
above which bidders never participate, is lower when the distribution of participa-
tion costs is first-order stochastically dominated.
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1 Introduction

Auctions are an efficient way to allocate scarce resources. However, when bidders 
participate in an auction, they often incur participation costs. Some costs are public 
information, such as the entry fees charged by the seller. However, the participation 
cost usually reflects the opportunity cost of the time of participating, the cost of the 
effort needed to learn the rules and prepare a strategy, or the cost of raising the nec-
essary credit to participate (in spectrum auctions). These costs can be quite private 
since only the bidder knows his opportunity costs, ability of learning, and fundrais-
ing costs. With the existence of participation costs, not all potential bidders will par-
ticipate in auctions.1 In practice, usually only a small fraction of potential bidders 
participate in various auctions.2 This has some policy implications if the seller wants 
to eliminate the lower tail of bidders in the distribution of willingness to pay. Bid-
ders with low willing- ness to pay will stay out of the auction since they are com-
paring their expected revenue with their private participation costs. The remaining 
participants take this into account when they are bidding. Participation decisions, 
along with bidding strategies, should be determined simultaneously in equilibrium.

Auctions with participation costs have been investigated substantially in the lit-
erature since the salient work by Green and Laffont (1984), who study participa-
tion constraints in the Vickrey auction in a two-dimensional uniform private setting. 
This literature mostly focuses on second-price auctions, since the bidding behavior 
in second-price auctions is very straightforward. When a bidder finds it is optimal 
to participate in a second-price auction, he can not be better than bidding his true 
value. To characterize the participation equilibrium, the literature deals with the 
case where only one of the participation cost and the value is privately informed 
(Campbell 1998; Tan and Yilankaya 2006; Cao and Tian 2013). Some recent papers 
deal with the case in which both participation costs and value are private informa-
tion (Gal et al. 2007; Cao et al. 2018), i.e., they characterize the participation equi-
librium in a two-dimensional private setting.

First-price auctions with participation costs are not well-studied, since it is tech-
nically difficult to characterize the bidding functions as well as the expected rev-
enue from participation. The difficulty hinges on that, in first-price auctions, bidding 
strategies are not so explicit compared to those in second-price auctions. Samuel-
son (1985) studies the symmetric cutoff threshold entrance equilibrium of first-price 
competitive procurement auctions.3 Cao and Tian (2010) study the equilibria of first-
price auctions when participation costs are common to all bidders. Cao et al. (2019) 
further study a similar problem in a two-dimensional setting where values are drawn 

1 Related terminology includes participation cost, participation fee, entry cost, or opportunity costs 
of participating in the auction. Participating costs differs from entry fee in that entry fee is part of the 
seller’s revenue while participation cost is more general. As we only study the bidder’s problem in this 
paper, we do not distinguish these two terminology.
2 Hendricks et al. (2003) find only around 25 percent of potential bidders participate in the auctions that 
took place within 15 years in the united states. Bajari and Hortacsu (2003), Li and Zheng (2009), Athey 
S et  al. (2011), Li and Zhang (2010, 2015), Krasnokutskaya and Seim (2011), Roberts and Sweeting 
(2013) for various auctions. See Feng, Lu and Sun (2016) for details.
3 Another example is Menezes and Monteiro (2000).
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from a binary distribution. This paper extends the existing literature on first price 
auctions with participation costs to a general two-dimensional private setting. There 
are at least two reasons to consider the similar questions in the First-Price-Auction 
setting. On the one hand, first-price auctions are frequently accommodated in prac-
tice, for instance, the auctions for tendering, particularly for government contracts 
and auctions for mining leases, studies of first-price auctions have received little 
attention, especially when both values and participation costs are privately informed. 
On the other hand, the bidding strategies in first-price auctions are generally more 
complicated, different equilibrium bidding functions generally exist due to different 
supports of the valuation distributions, which especially arises when bidders use dif-
ferent cutoffs to participate.

We present a general two-dimensional private setting on both values and partici-
pation costs in a first-price auction and characterize the equilibrium. Bidders can 
be heterogenous in their types. We focus on the cutoff strategy, assuming that, all 
bidders participate whenever their private costs are less than or equal to some criti-
cal value, which is characterized by the expected payoff from participating, taking 
account of other bidders’ participation decision. To characterize the equilibrium in 
cutoff strategies we first convert the equilibrium conditions for a profile of cutoff 
strategies to a system of integral equations. We then use the Schauder-Tychonoff 
fixed-point theorem to show that there is a solution to the system of integral equa-
tions, which establish the existence of the equilibria. We further investigate the 
uniqueness of the equilibrium. Particularly, when all bidders are homogeneous in 
their types, we show there is a unique symmetric equilibrium, i.e., all bidders use the 
same cutoff curves and the same bidding functions which is contingent on the num-
ber of other participants. By applying the contraction mapping theorem, in a two-
bidder economy with general distributions, we show that under some mild restric-
tions on the joint density of values and participation costs, the equilibrium is unique. 
Our result shows that when the joint density is uniformly bounded, the equilibrium 
is unique, which typically occurs when the distribution is more dispersed.

We also compare symmetric equilibria with different distributions of participa-
tion costs. Consider two symmetric equilibria, A and B, where the distribution of 
participation costs in equilibrium A first-order stochastically dominates that in equi-
librium B. We show that the cutoff function in equilibrium A is higher than those in 
equilibrium B. Intuitively, if the participation costs are more concentrated in high 
values, then the expected cost to participate of all bidders is higher. For each bid-
der i, this implies that other bidders are less likely to participate, leading to a larger 
expected revenue for bidder i. Hence, bidder i is willing to pay more to participate 
into the auction.

The main contribution of our paper is as follows. Firstly, this is the first paper 
to investigate the participation in first price auctions in a two-dimensional private 
setting, which is significant from both the theoretical and empirical point as first 
price auctions are used more widely in practice. Secondly, our work is technically 
more challenging as we have to deal with both the symmetric and even asymmetric 
first price auction. As such, it is technically more difficult to find the cutoffs since 
they are determined by the expected revenue from participating in the auction at 
the thresholds, which in turn depends on the more complicated bidding functions of 
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bidders who submit bids. Last but not the least, we provide a sufficient condition for 
the uniqueness of the equilibrium.

The most closely related paper is Cao et al. (2018). Our findings show that most 
results in second-price auctions with private participation costs still hold in first-
price auctions with private participation costs. However, our results differ from 
theirs in at least two important aspects. First, the sufficient condition for the unique-
ness of equilibrium of our paper is weaker (more general) than theirs. Second, we 
can compare symmetric equilibria with different distributions of participation costs 
if these distributions can be ranked by the first-order stochastic dominance.

The remainder of the paper is organized as follows. We describe the model in 
Sect. 2. In Sect. 3, we characterize the equilibrium cutoff and investigate the exist-
ence of the equilibrium. The uniqueness is addressed in Sect. 4. Concluding remarks 
are given in Sect. 5.

2  Model

Consider an independent value environment with one seller and n risk-neutral buy-
ers (bidders). Let N = {1, 2,… , n} and N−i = N∕{i} . The seller has an indivisible 
object which he values at zero. The bidder with the highest bid wins the auction and 
pays the price equal to his bid. His payoff is equal to the difference between his valu-
ation and the price. The other bidders have zero payoff from submitting a bid. If the 
highest bid is submitted by more than one bidder, there is a tie which will be broken 
by a fair lottery. When a bidder submits a bid, he knows who others also submit bids 
and thus, he can submit a contingent bid based on the identity of his competitors in 
the auction.

Basically, we are considering a two-stage game. In the first stage, all bidders 
simultaneously determine whether or not to participate in a first price auction. If 
a bidder chooses to submit a bid, he pays his participation cost that is not refund-
able, otherwise the game ends for him. In the second stage, all the bidders who pay 
the participation costs observe who else also participates in the auction and submit 
a bid. In order to submit a bid, bidder i must incur a non-refundable participation 
cost ci . Bidder i’s value for the object, vi , and his participation cost ci are indepen-
dently drawn from the distribution function Ki(v, c) , with support [0, 1] × [0, 1].4 Let 
ki(v, c) ≥ 0 be the corresponding density function.5 Assume that Ki(v, c) is continu-
ously differentiable, for all i ∈ N.

The individual action set for any bidder can be characterized as No ∪ [0, 1] , where 
”No” denotes not submitting a bid. Bidder i incurs the participation cost c if and 
only if his action is different from ”No”. In first-price auctions, given the strategies 

4 The support for valuations is normalized to be [0, 1] . Bidders with participation costs higher than 1 
will not participate in the auction and such bidders are of no practical interest. If the upper bounds of the 
supports for the participation costs are higher than 1, the above distributions on the participation costs 
should be interpreted as the truncated distributions of the original distributions on [0, 1].
5 We will study the special case where v

i
 and c

i
 are independently distributed in Sects. 4 and 5. When 

there are atoms in the distribution, k
i

(

v
i
, c

i

)

 can incorporate Dirac delta functions to handle the infinite 
density.
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of all other bidders, as suggested by Lu and Sun (2007) that for any auction mecha-
nism with participation costs, the participating and nonparticipating types of any 
bidder are divided by a non-decreasing and equicontinuous shutdown curve. Thus, 
a bidder submits a bid if and only if his expected payoff is greater than or equal to a 
cutoff point for costs and does not enter otherwise.

An equilibrium strategy of each bidder i is then determined by the expected pay-
off of participating in the auction c∗

i
(v) when his value is v, together with how to bid 

in the first-price auction depending on the participation decision of other bidders. 
In equilibrium, c∗

i
(v) depends on the distributions of all bidders’ valuations and par-

ticipation costs. We can interpret c∗
i
(v) as the maximal amount bidder i would like 

to pay to participate in the auction when his value is v. Since participation costs are 
non-refundable (sunk costs), when a bidder decides to bid, his bidding strategy does 
not depend on his participation costs. Let c∗(v) =

{

c∗
1
(v), c∗

2
(v),… , c∗

n
(v)

}

 denote the 
set of cutoff functions of all bidders and c∗

−i
(v) ∶= c

∗(v)∕
{

c∗
i
(v)

}

.
Before describing bidding strategies, we need to introduce a few notations. Notice 

that when k other bidders compete with bidder i, there could be different group of 
bidders and the number of groups is Ck

n−1
 . Denote Okl

i
 , i ∈ N , k = {0, 1, 2,… , n − 1} , 

and l ∈
{

1, , 2,… ,Ck
n−1

}

 , as the set of the l-th group with k bidders who also partici-
pate in the auction when bidder i participates. Define Ok

i
= ∪l∈{1,,2,…,Ck

n−1}
O

kl
i
 as the 

set of all groups with k other participating bidders. Then, define Oi = ∪k∈{1,,2,…,n−1}O
k
i
 

as the set of all groups with at least one other participating bidder.
Let S

kl
i
=
{

c∗
j
(v), bj,Kj

(

cj, vj
)

}

j∈O
kj

i

 , i ∈ N , k = {1, 2,… , n − 1} , and 

l ∈
{

1, , 2,… ,Ck
n−1

}

 , denote the set of the distributions of valuations and participa-
tion costs as well as cutoff functions and bidding strategies of all other bidders in the 
set of the l-th group with k bidders who also participate in the auction when bidder i 
participates. Define Sk

i
= ∪l∈{1,,2,…,Ck

n−1}
S
kl
i
 and Si = ∪k∈{1,,2,…,n−1}S

k
i
 accordingly. 

Then, the bidder i’s strategy when he faces the l-th group of other k bidders can be 
characterized by:

where bkl
i

(

vi, S
kl
i

)

 is a contingent bidding function when bidder i participates in the 

auction. Assume bkl
i

(

vi, S
kl
i

)

 is differentiable with respect to vi for all i ∈ N . Note 
that, if bidder i enters the auction while the other bidder does not, bidder i bids zero. 
If the other bidder also participate, the bid of bidder i depends on 1) his own value; 
2) the distributions of valuations and participation costs of other bidders; and 3) cut-
off functions and bidding strategies of other bidders. In equilibrium, bidder i with 

(1)b
kl
i

(

vi, ci, S
kl
i

)

=

{

b
kl
i

(

vi, S
kl
i

)

, if ci ≤ c∗
i

(

vi
)

No, if ci > c∗
i

(

vi
)
,
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value vi is indifferent between participating and not participating if ci = c∗
i

(

vi
)

.6 For 
simplicity, we use b

kl
i

(

vi
)

 to denote b
kl
i

(

vi, S
kl
i

)

 hereafter. Define 

bk
i
(⋅) =

{

b
kl
i
(⋅)
}

l∈{1,,2,…,Ck
n−1}

 and bi(⋅) =
{

bk
i
(⋅)
}

k∈{1,,2,…,n−1}
 accordingly. Denote 

b(v) =
{

b1(v), b2(v),… , bn(v)
}

 as the set of bidding strategies of all bidders and 

b−i(v) ∶= b
∗(v)∕

{

bi(v)
}

 . Let vkl
i

(

b
kl
i

)

 denote the corresponding inverse bidding 

function. Define vk
i
(⋅) =

{

v
kl
i
(⋅)
}

l∈{1,,2,…,Ck
n−1}

 and vi(⋅) =
{

vk
i
(⋅)
}

k∈{1,,2,…,n−1}
 

accordingly.
For the game described above, each bidder’s action is to choose a cutoff for each 

value, i.e., a cutoff function, and decide how to bid when he participates. Thus, a 
(Bayesian-Nash) equilibrium of the sealed-bid first-price mechanism with participa-
tion costs is composed of bidders’ cutoff strategies and participants’ bidding strate-
gies. Formally, we define the strategy profiles as follows.

Definition 1 A strategy profile (c∗(v), b(v)) is a (Bayesian-Nash) equilibrium of the 
first-price auction with private participation costs if action 

(

c∗
i
(v), bi(v)

)

 maximizes 
the expected revenue of bidder i, given the strategies of other bidders 

(

c
∗
−i
(v), b−i(v)

)

.

Note that, once the cutoff functions c∗(v) are determined, the game is reduced to 
the standard first-price auction and the optimal bidding functions for participating 
bidders are uniquely determined (see Maskin and Riley 2003). As such, an equi-
librium is fully characterized by the set of cutoffs c∗(v) . Then, all the results in the 
paper should be interpreted in terms of cutoff functions. In general, different bidders 
have different cutoff functions since the distributions Ki(v, c) is bidder-specific. How-
ever, when the distributions are the same across all bidders, i.e., Ki(v, c) = K(v, c) for 
all i ∈ N , we can define a symmetric equilibrium.

Definition 2 If Ki(v, c) = K(v, c) for all i ∈ N , an equilibrium (c∗(v), b(v)) of the 
first-price auction with participation costs is symmetric equilibrium if the bidders 
have the same cutoff function, i.e., c∗

i
(v) = c∗(v) for all i ∈ N.

When bidders are homogenous and use the same cutoff function, all bidders will 
share the same bidding function, which is contingent on the number of competitors 
in the auction.

Remark 1 c∗
i

(

vi
)

= 1 implies bidder i with valuation vi always participates and 
c∗
i

(

vi
)

= 0 implies bidder i with valuation vi never participates.

6 The description of the equilibria can be slightly different under different informational structures 
on K

i

(

v
i
, c

i

)

 . For example, when v
i
 is private information and c

i
 is exogenously fixed for all bidders, 

K
i

(

v
i
, c

i

)

= K
i

(

v
i

)

 (See Cao and Tian 2010), the equilibrium is described by a valuation cutoff v∗
i
 for bid-

der i such that bidder i submits a bid whenever v
i
≥ v

∗
i
.
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Remark 2 In our case, a bidder who participates will submit bids that are contingent 
on the number and the composition of other participants. In certain auctions, bidders 
may not observe who else participates when they submit bids. In these cases, how-
ever, a bidder can only submit a uniform bid that does not depend on the number and 
the composition of other bidders who actually participate. The problem of each bid-
der in this case is similar to that in our setting. Whether changing our setting to the 
one where bidders cannot observe who else participates will affect the main results 
of this paper will be left for future research.

Remark 3 If we ignore the participation constraints, the game would be reduced to a 
one-dimensional private information first-price auction. In our setting, bidders par-
ticipates whenever their participation costs are sufficiently low, or put it differently, 
they participate whenever their value is above a threshold. Thus, the bidding strat-
egy as a function of value for each participant will be only defined above the thresh-
old of the value. Since the thresholds are different across participants, the bidding 
functions of bidders have different supports. In addition, the bidding function in the 
standard first-price auction has a closed form, but the bidding function in our two-
dimensional setting can only be defined implicitly. Hence, the bidding functions in 
the two settings cannot be compared directly.

3  Equilibrium

Suppose, for the time being, there exists an equilibrium where bidders use the cutoff 
functions c∗(v) as their participation strategy. Bidder i with value v will participate in 
the auction and submit a bid that is contingent on information of other participating 
bidders Si if and only if ci ≤ c∗

i

(

vi
)

 . Bidder i with value vi can win the object being auc-
tioned only when the following two cases happen. Firstly, there is no other participants. 
This happens with probability 

∏

j∈N−i
∫ 1

0
∫ 1

c∗
j
(�)

kj(c, �)dcd� . Bidder i just bids zero in 
this case.

In the second case, there are at least one other bidder participating the auction yet 
all other bidders bid less than what bidder i bids. As we describe above, bidder i could 
face many different group of opponents. We give the following example to illustrate 
the simple expressions for this game. Then, we will go to the general case to show the 
equilibrium.

Example 1 Let n = 3 . We only characterize the cutoff function of bidder 1 and the 
case for other two bidders is similar. Notice that O11

1
= {2} and O12

1
= {3} . Hence, 

O1
1
= {{2}, {3}} . In addition, O2

1
= {2, 3} . Therefore, the expected revenue maximi-

zation problem of bidder 1 with value v is:



 X. Cao et al.

1 3

The first line is the payoff when all other bidders do not participate. The second and 
third line are the payoff when bidder 3 and 2 does not participate and bidder 2 and 
3 participates but bids less than what bidder 1 does. The last line is the payoff when 
both other bidders participate but bid less. By the envelope theorem, we have

Based on the above example, now we consider the case where the l-th group 
of k other bidders participate yet all these k bidders bid less than bkl

i
 . In this case, 

bidder i with value v bids bi to maximize his expected revenue:

where

The first part is the revenue conditional on winning. The second part is the probabil-
ity of facing the l-th group of k other bidders who all bid less than b. To ensure these 
probabilities are well-defined, we assume

c∗
1
(v) = v

(

∫
1

0 ∫
1

c∗
2
(�)

k2(c, �)dcd�

)(

∫
1

0 ∫
1

c∗
3
(�)

k3(c, �)dcd�

)

+max
b
11
1

(

v − b
11
1

)

(

∫
v1
2

(

b
11
1

)

0 ∫
c∗
2
(�)

0

k2(c, �)dcd�

)(

∫
1

0 ∫
1

c∗
3
(�)

k3(c, �)dcd�

)

+max
b
12
1

(

v − b
12
1

)

(

∫
v1
3

(

b
12
1

)

0 ∫
c∗
3
(�)

0

k3(c, �)dcd�

)(

∫
1

0 ∫
1

c∗
2
(�)

k2(c, �)dcd�

)

+max
b2
1

(

v − b2
1

)

(

∫
v2
2(b

2
1)

0 ∫
c∗
2
(�)

0

k2(c, �)dcd�

)(

∫
v2
3(b

2
1)

0 ∫
c∗
3
(�)

0

k3(c, �)dcd�

)

.

c∗�
1
(v) =

(

∫
1

0 ∫
1

c∗
2
(�)

k2(c, �)dcd�

)(

∫
1

0 ∫
1

c∗
3
(�)

k3(c, �)dcd�

)

+

(

∫
v1
2

(

b
11
1
(v)

)

0 ∫
c∗
2
(�)

0

k2(c, �)dcd�

)(

∫
1

0 ∫
1

c∗
3
(�)

k3(c, �)dcd�

)

+

(

∫
v1
3

(

b
12
1
(v)

)

0 ∫
c∗
3
(�)

0

k3(c, �)dcd�

)(

∫
1

0 ∫
1

c∗
2
(�)

k2(c, �)dcd�

)

+

(

∫
v2
2(b

2
1
(v))

0 ∫
c∗
2
(�)

0

k2(c, �)dcd�

)(

∫
v2
3(b

2
1
(v))

0 ∫
c∗
3
(�)

0

k3(c, �)dcd�

)

.

(2)max
bi

(

v − bi
)

P
(

bi;O
kl
i

)

,

P
(

bi;O
kl
i

)

∶=
∏

j∈O
kl
i

∫
v
k
l�

j (bi)

0 ∫
c∗
j
(�)

0

kj(c, �)dcd�.
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whenever Okl
i
 are empty sets, respectively, for all i ∈ N , k = {0, 1, 2,… , n − 1} , and 

l ∈
{

1, 2,… ,
(n−1)!

k!(n−1−k)!

}

.
Notice that the bidding strategy bkl

i
(v) solves this problem. Maskin and Riley (2003) 

show that there is a unique bidding equilibrium for the above first-price auction. Denote 
the maximized expected revenue of bidder i when he competes with the l-th group of k 
other bidders by:

where

is the probability of all other bidders do not participate. To ensure these probabilities 
are well-defined, we assume

whenever N−i∕O
kl
i
 are empty sets, respectively, for all i ∈ N , k = {0, 1, 2,… , n − 1} , 

and l ∈
{

1, 2,… ,
(n−1)!

k!(n−1−k)!

}

 . Hence, the total maximized expected revenue of bid-
der i with value v when there is at least one opponent is given by:

Therefore, in equilibrium, the following condition must hold:

for all i ∈ N . For the sake of simplicity, we define Φi(v) as follows:

∏

j∈O
kl
i

∫
v
k
l�

j (bi)

0 ∫
c∗
j
(�)

0

kj(c, �)dcd� = 1,

(3)R
kl
i
(v) =

(

v − b
kl
i
(v)

)

P
(

b
kl
i
;O

kl
i

)

Q
(

N−i∕O
kl
i

)

,

Q
(

N−i∕O
kl
i

)

∶=
∏

m∈N−i∕O
kl
i

∫
1

0 ∫
1

c∗
m
(�)

km(c, �)dcd�,

∏

j∈O
kl
i

∫
v
k
l�

j (bi)

0 ∫
c∗
j
(�)

0

kj(c, �)dcd� = 1,
∏

m∈N−i∕O
kl
i

∫
1

0 ∫
1

c∗
m
(�)

km(c, �)dcd� = 1,

(4)Ri(v) =

n−1
∑

k=1

(n−1)!

k!(n−1−k)!
∑

l=1

R
kl
i
(v).

(5)c∗
i
(v) = v

(

∏

j∈N−i

∫
1

0 ∫
1

c∗
j
(�)

kj(c, �)dcd�

)

+ Ri(v),

Φi(s) ∶=
∏

j∈N−i

∫
1

0 ∫
1

c∗
j
(�)

kj(c, �)dcd� +

n−1
∑

k=1

(n−1)!

k!(n−1−k)!
∑

l=1

P
(

b
kl
i
(s);O

kl
i

)

Q
(

N−i∕O
kl
i

)

.
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Notice that Φi(v) is the probability of winning for bidder i with value v. Notice that 
O0

i
 is empty, we have N−i = N−i∕O

0
i
 and, for all i ∈ N,

Hence, we can rewrite Φi(v) as follows:

for all i ∈ N.
Next, let P̄

(

b
kl
i
(v);O

kl
i

)

 denote the probability of losing for bidder i in Okl
i
 when 

his bid is bkl
i
(v) , for i ∈ N , k = {1, 2,… , n − 1} , and l ∈

{

1, 2,… ,
(n−1)!

k!(n−1−k)!

}

 . For 
each Okl

i
 , rank bidders by their valuations in ascending order. In particular, if the val-

uation of a bidder in Okl
i
 is the p-th largest, the index of this bidder is p ∈ {1, 2,… , k} . 

Define the following two auxiliary probabilities:

By the definition of P̄
(

b
kl
i
(v);O

kl
i

)

 , we have:

Now, since Φi(⋅) is the probability of winning for bidder i, we have:

Proposition  1 solves the expected revenue maximization problem and derives the 
equilibrium condition that the cutoff function has to satisfy.

Proposition 1 Suppose there exists an equilibrium cutoff c∗(v) and all bidding func-
tions are differentiable. Then, c∗(v) is characterized by:

⎛

⎜

⎜

⎝

�

j∈O0
i

∫
v
k
l�

j

�

b
kl
i
(v)

�

0 ∫
c∗
j
(�)

0

kj(c, �)dcd�

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

�

j∈N−i∕O
kl
i

∫
1

0 ∫
1

c∗
j
(�)

kj(c, �)dcd�

⎞

⎟

⎟

⎠

=
�

j∈N−i

∫
1

0 ∫
1

c∗
j
(�)

kj(c, �)dcd�.

Φi(v) =

n−1
∑

k=0

(n−1)!

k!(n−1−k)!
∑

l=1

P
(

b
kl
i
(v);O

kl
i

)

Q
(

N−i∕O
kl
i

)

,

Qkl
p
=

�

∏p−1

j=1
∫ v

k
l�

j

�

b
kl
i
(v)

�

0
∫ c∗

j
(𝜏)

0
kj(c, 𝜏)dcd𝜏, if 2 ≤ p ≤ k

1, if p = 1
,

Q̄kl
p
=

�

∏k

j=p+1
∫ 1

0
∫ c∗

j
(𝜏)

0
kj(c, 𝜏)dcd𝜏, if 1 ≤ p ≤ k − 1

1, if p = k
.

P̄
(

b
kl
i
(v);O

kl
i

)

∶=

k
∑

p=1

((

∫
1

v
k
l�
p

(

b
kl
i
(v)

) ∫
c∗
p
(𝜏)

0

kp(c, 𝜏)dcd𝜏

)

Qkl
p
Q̄kl

p

)

.

(6)Φi(v) = 1 −

n−1
∑

k=0

(n−1)!

k!(n−1−k)!
∑

l=1

(

P̄
(

b
kl
i
(v);O

kl
i

)

Q
(

N−i∕O
kl
i

))

.
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with c∗
i
(0) = 0 for all i ∈ N . c∗

i
(v) is differentiable with

for all i ∈ N . c∗�
i
(v) is also differentiable.

Proof See the Appendix.   ◻

Notice that the first part of c∗�
i
(v) is

the probability that none of the other n − 1 bidders participates and the second 
part is the probability that at least one of the other n − 1 participating bidders who 
all bid less than bi . Hence, c∗�

i
(v) , as the sum of the two parts, is the probability of 

winning for bidder i. We illustrate the above analysis in the three-bidder example 
below.

Remark 4 vj
(

bi(v)
)

 gives the value of bidder j such that he bids exactly the same as 
bidder i with value v. When all bidders use the same bidding function, vj

(

bi(v)
)

= v . 
This happens in second price auctions or in a symmetric equilibrium in first price 
auctions.

Before establishing the existence and uniqueness of the equilibrium, we first char-
acterize some useful properties of the equilibrium cutoff function c∗(v) . Proposi-
tion 2 summarizes these properties that will be used in the proof of Theorem 1.

Proposition 2 Suppose there exists an equilibrium cutoff c∗(v) . It has the following 
properties: for i ∈ N , 

 (i) c∗�
i
(v) ≥ 0 and c∗��

i
(v) ≥ 0;

 (ii) 0 ≤ c∗
i
(v) ≤ v;

 (iii) c∗�
i
(1) = 1.

Proof See the Appendix.   ◻

The first part of Proposition 2 states that the expected payoff from participating 
of a bidder is increasing and convex in his value v. The second part shows that a bid-
der will not be willing to pay more than his value to participate in the auction. The 
last part finds that the marginal willingness to pay to participate in the auction of the 
bidder with value v = 1 is also 1. The intuition is that when his value for the object is 
1, he will almost surely win the object, and the marginal willingness to pay is equal 
to his value which is 1.

We establish our main results, which are the existence and uniqueness of the 
symmetric equilibrium, in Theorem 1.

(7)c∗
i
(v) = ∫

v

0

Φi(s)ds,

(8)c∗�
i
(v) = Φi(v),



 X. Cao et al.

1 3

Theorem 1 There always exists an equilibrium cutoff function c∗(v) such that all bid-
ders participate whenever ci ≤ c∗

i
(v) and Eq. (7) holds for all i ∈ N simultaneously.

Proof See the Appendix.   ◻

Remark 5 In the proof, we construct a mapping of c∗(v) from a space to itself. In the 
Appendix, we show that this space is a compact convex nonempty subset of a locally 
convex topological space and the mapping is continuous. Then we establish the 
existence of equilibrium using the Schauder-Tychonoff fixed-point theorem, which 
states that any continuous mapping from a nonempty compact convex subset of a 
locally convex topological space to itself has a fixed point

4  Uniqueness

In this section, we investigate the uniqueness of equilibrium in two interesting yet 
important settings. On the one hand, we establish the uniqueness of equilibrium in the 
case where all bidders are ex ante homogeneous. For any two symmetric equilibria 
where valuations and participation costs are independently distributed, we show that 
the equilibrium cutoff is lower when the distribution of participation costs is first-order 
stochastically dominated. On the other hand, we show there is a unique equilibrium in 
the case where the distribution functions are heterogeneous across bidders.

4.1  Symmetric equilibrium

We first establish uniqueness of symmetric equilibrium. Assume all bidders are 
homogenous with a common joint distribution of valuations and participation costs. 
Ki(⋅, ⋅) = K(⋅, ⋅) and ki(⋅, ⋅) = k(⋅, ⋅) for all i ∈ N . We focus on the symmetric equilib-
rium in which all bidders share the same cutoff function c∗

i
(v) = c∗(v) and the same 

bidding function bi(v) = b(v) , for all i ∈ N . In this case, once a bidder participates, his 
bid depends only on the number of other participating bidders. Let bk(v) be the bidding 
function of a bidder with value v when there are k other participants. Then, the cutoff 
function satisfies:

Proposition 3 characterizes the cutoff c∗(v) in an symmetric equilibrium.

c∗(v) = v

�

∫
1

0 ∫
1

c∗(�)

k(c, �)dcd�

�n−1

+

n−1
�

k=1

Ck
n−1

⎛

⎜

⎜

⎝

max
bk

�

v − bk
�

�

∫
vk(bk)

0 ∫
c∗(�)

0

k(c, �)dcd�

�k

�

∫
1

0 ∫
1

c∗
j
(�)

k(c, �)dcd�

�n−1−k
⎞

⎟

⎟

⎠

.
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Proposition 3 When all bidders are homogenous, the symmetric equilibrium is char-
acterized by

with c∗(v) ∈ [0, v] and c∗(0) = 0 . c∗(v) is differentiable with

and c∗�(1) = 1 . c∗�(v) is also differentiable with c∗��(v) ≥ 0.

Proof See the Appendix.   ◻

Equation  (9) in Proposition  3 is the functional equation that determines the 
equilibrium cutoff function c∗(v) . The functional Eq. (9) and its derivative in the 
expression right below (9) are derived from the equation right above Proposi-
tion 3. The left-hand side of this equation is the cutoff value of the participation 
cost for a bidder with value v. The right-hand side of this equation is the expected 
revenue of a bidder with value v from participating. In particular, the first term is 
the revenue of the bidder when there is no other participant and the second term 
is the summation of the expected revenue of the bidder in all other cases. We 
illustrate the symmetric equilibrium in the three-bidder example below.

Example 2 Assume all bidders are homogenous: Ki(⋅, ⋅) = K(⋅, ⋅) . The expected rev-
enue maximization problem of any bidder with value v is:

The first line is the payoff when all other bidders do not participate. The second line 
is the payoff when only one other bidder participates but bids less than what bidder 
1 does. The last line is the payoff when both other bidders participate but bid less. 
By the envelope theorem, we have

(9)c∗(v) = ∫
v

0

[

1 − ∫
1

t ∫
c∗(�)

0

k(c, �)dcd�

]n−1

dt,

c∗�(v) =

(

1 − �
1

v �
c∗(�)

0

k(c, �)dcd�

)n−1

≥ 0,

c∗(v) = v

(

∫
1

0 ∫
1

c∗(�)

k(c, �)dcd�

)2

+ 2max
b1

(

v − b1
)

(

∫
v1(b1)

0 ∫
c∗(�)

0

k(c, �)dcd�

)

(

∫
1

0 ∫
1

c∗(�)

k(c, �)dcd�

)

+max
b2

(

v − b2
1

)

(

∫
v2(b2)

0 ∫
c∗(�)

0

k(c, �)dcd�

)2

.
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We establish the uniqueness of symmetric equilibrium in Theorem 2.

Theorem 2 (Uniqueness of Symmetric Equilibrium) Suppose that all bidders have 
the same distribution function K(⋅, ⋅) . There is a unique symmetric equilibrium 
where all bidders use the identical cutoff strategy c∗(⋅).

Proof See the Appendix.   ◻

Remark 6 In the literature, Cao and Tian (2010) and Cao et al. (2019) are the very 
few papers that also establish the existence and uniqueness of equilibrium in first-
price auctions with participation costs. However, Cao and Tian (2010) assume that 
participation costs are common knowledge while the private value follows a binary 
distribution in Cao et al. (2019). Thus, to some extent, these authors investigate spe-
cial cases of this paper.

Corollary 1 c∗(v) decreases as n increases.

Proof See the Appendix.   ◻

Intuitively as there are more potential bidders, the expected payoff from par-
ticipating will be less as bidders face more competition and thus bidder are less 
willing to participate.

Next, we investigate how the unique symmetric equilibrium cutoff function 
responds to changes of the distribution of participation costs. Note that Proposi-
tion 3 implies that the cutoff function of a symmetric equilibrium is determined 
in Eq.  (9) solely by the joint distributions of valuations and participation costs. 
It is interesting to compare equilibrium cutoff functions that corresponds to dif-
ferent distributions of participation costs. To this end, we assume valuations 
and participation costs are independently distributed, i.e. K(v, c) = F(v)G(c) and 
k(v, c) = f (v)g(c)with f (v) = F�(v) and g(c) = G�(c) . We compare equilibrium cut-
off functions of symmetric equilibria, where all bidders share an equilibrium cut-
off function c∗(⋅).

c∗�(v) =

(

∫
1

0 ∫
1

c∗(�)

k(c, �)dcd�

)2

+ 2

(

∫
v

0 ∫
c∗(�)

0

k(c, �)dcd�

)(

∫
1

0 ∫
1

c∗(�)

k(c, �)dcd�

)

+

(

∫
v

0 ∫
c∗(�)

0

k(c, �)dcd�

)2

=

(

1 − ∫
1

v ∫
c∗(�)

0

k(c, �)dcd�

)2

.
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More specifically, consider two sets of distributions A and B, where FA(v) = FB(v) 
and GA(c) first-order stochastically dominates GB(c) , i.e. GA < GB.7 We rewrite 
Eq. (9) for q ∈ {A,B} as follows:

Theorems  1 and 2 ensure that there is a unique equilibrium for distribution 
q ∈ {A,B} . Proposition  4 presents the comparative statics of the symmetric 
equilibrium.

Proposition 4 c∗
A
(v) > c∗

B
(v) for all v ∈ (0, 1] if GA first-order stochastically domi-

nates GB , where c∗
q
(v) is the equilibrium cutoff function for distribution q ∈ {A,B}.

Proof See the Appendix.   ◻

Remark 7 Intuitively, if the participation costs are more concentrated in high values, 
then the expected cost to participate of all bidders is higher. For each bidder i, this 
implies that other bidders are less likely to participate. Hence, the expected revenue 
for bidder i is larger. This in turn means bidder i is willing to pay more to participate 
into the auction. Notice also that even though the equilibrium cutoff is higher, the 
probability of participation for each bidder declines.

4.2  Uniqueness of equilibrium

Uniqueness of the symmetric equilibrium does not imply the uniqueness of equilib-
rium. Even when bidders are homogenous, they may still participate in the auction 
asymmetrically, i.e., they use different cutoff curves. In the next section, under a gen-
eral distribution, we provide a sufficient condition for the uniqueness of equilibrium.

In this subsection, we consider the case where there are two bidders. In this case, 
Eqs. (7) and (8) are reduced to:

where i, j ∈ {1, 2} and i ≠ j . To show the uniqueness of asymmetric equilibrium, we 
rely on the contraction mapping theorem. Proposition 5 presents our result.

c∗
q
(v) = ∫

v

0

[

1 − ∫
1

t

fq(�)Gq

(

c∗
q
(�)

)

d�

]n−1

dt.

(10)

c∗
i
(v) =∫

v

0

[

1 − ∫
1

vj(bi(s))
∫

c∗
j
(�)

0

kj(c, �)dcd�

]

ds,

c∗�
i
(v) =1 − ∫

1

vj(bi(v))
∫

c∗
j
(�)

0

kj(c, �)dcd�,

7 Subscripts A and B are used to indicate variables associated with different distributions.
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Proposition 5 (Uniqueness of Equilibrium) Suppose n = 2 . If, for i, j ∈ {1, 2} and 
j ≠ i , (i) Ki

(

ci, vi
)

 is differentiable; and (ii) supc,v∈[0,1]ki(c, v) <
1

∫ 1

0

[

1−vi(bj(v))
]

dv
 , then 

there exists a unique equilibrium.

Proof See the Appendix.   ◻

Corollary 2 Suppose n = 2 . If, for i, j ∈ {1, 2} and j ≠ i , (i) Ki

(

ci, vi
)

 is differentia-
ble; and (ii) the valuations and participation costs are independently distributed, i.e. 
Ki

(

vi, ci
)

= Fi

(

vi
)

Gi

(

ci
)

 ; and (iii) supc∈[0,1]gi(c) <
1

∫ 1

0

[

1−Fi(vi(bj(v)))
]

dv
 , then there 

exists a unique equilibrium. Condition (iii) holds if condition (ii) in Proposition 5 is 
satisfied.

Proof See the Appendix.   ◻

Remark 8 A few remarks on the uniqueness of equilibrium for the two-bidder setting 
are in order. 

(1) The sufficient conditions in Proposition 5 can be easily satisfied. For instance, 
when participation costs are jointly uniformly distributed on [0, 1] × [0, 1] for 
both bidders, the supremum of the density for participation costs is 1, i.e., 
supc,v∈[0,1]ki(c, v) = 1 , and clearly ∫ 1

0

[

1 − vi
(

bj(v)
)]

dv < 1 for any Ki(⋅, ⋅) on 
[0, 1] × [0, 1] . Thus, in this case, the equilibrium is unique regardless of the 
distributions of valuations and participation costs.

(2) It can be concluded that in the two-bidder economy, when the bidders are homo-
geneous and when the sufficient conditions in Proposition 5 are satisfied, the 
symmetric equilibrium is the unique equilibrium.

(3) In the proof of the uniqueness of equilibrium, we make use of the mean value 
theorem before using the contraction mapping theorem. For n ≥ 3 , there are 
more product terms in the expected revenue of each bidder, which makes the 
application of the mean value theorem less tractable.

(4) To understand the sufficient condition in Proposition 5, notice that our idea to 
show the uniqueness of equilibrium is to use the contraction mapping theorem. 
The sufficient condition ensures that the mapping defined in Eq. (10) is indeed 
a contraction mapping. Intuitively, this sufficient condition requires that the 
distribution of ci and vi are dispersed enough, or vi is more concentrated on low 
values.

5  Concluding remarks

We study the existence and uniqueness of equilibrium in first-price auctions when 
bidders’ values and participation costs are both private information. We show that 
under general distribution functions, there always exists an equilibrium in which 
each bidder uses a cutoff strategy. When bidders are ex ante homogeneous, there 
is a unique symmetric equilibrium. When there are two heterogeneous bidders, we 



1 3

Participation constraints in first-price auctions  

provide a mild sufficient condition for the uniqueness of the equilibrium. Future 
research could focus on identifying sufficient conditions that are easier to verify to 
guarantee uniqueness of equilibrium in general environments. Beside that, this paper 
only focus on the equilibrium analysis of the bidders. The next step would be to 
study the implications of the private participation costs on the seller’s expected rev-
enue as well as the social welfare. We would leave it for a future work.

Appendix

Proof of Proposition 1

First, notice that it follows from the inverse function theorem that all inverse bidding 
functions are also differentiable. Hence, Φi(v) and thus Ri(v) are differentiable for 
all i ∈ N . It follows that c∗

i
(v) is differentiable for all i ∈ N . Then, we can apply the 

envelope theorem in Eq. (5). Differentiating Eq. (5) derives:

for all i ∈ N . Since Φi(v) is differentiable, c∗�
i
(v) is also differentiable. Last, inte-

grating Eq. (8) from 0 to 1 and noticing c∗
i
(0) = 0 for all i ∈ N , we derive Eq. (7). 

To see why c∗
i
(0) = 0 , notice that since 0 ≤ b

kl
i
(v) ≤ 0 , we have bkl

i
(0) = 0 , for all 

i ∈ N , k = {1, 2,… , n − 1} , and l ∈
{

1, , 2,… ,Ck
n−1

}

 . It follows that Φi(0) = 0 , for 
all i ∈ N . Hence, evaluating Eq.  (5) at v = 0 yields c∗

i
(0) = 0 , for all i ∈ N . This 

completes the proof.

Proof of Proposition 2

First, (i) Eq.  (8) implies c∗�
i
(v) ≥ 0 since Ki(⋅, ⋅) is a distribution function defined 

on [0, 1] × [0, 1] . Since c∗�
i
(v) is differentiable for all i ∈ N , it is clear that Eq.  (8) 

implies c∗�(v) is increasing:

for all i ∈ N . Second, Eq. (7) implies c∗
i
(v) ≥ 0 . Notice that Φi(⋅) ∈ [0, 1] since it is 

the probability of winning for bidder i. Equation (7) implies:

Last, notice that:

c∗�
i
(v) = Φi(v),

c∗��
i
(v) = Φ�

i
(v) ≥ 0,

c∗
i
(v) = �

v

0

Φi(s)ds ≤ �
v

0

ds = v.
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where

Notice that Maskin and Riley (2003) show that if the upper endpoint of the support 
of the valuation distributions is the same for all bidders in first-price auctions, then 
the upper endpoints of the supports of all bidders’ equilibrium bid distributions are 
the same. Since vi have the same upper endpoint of their distributions, we have 
bi(1) = b⋆ and vj

(

bi(1)
)

= 1 , where j ≠ i and b⋆ is a constant. Evaluating c∗�
i
(v) at 

v = 1 derives c∗�
i
(1) = 1 since vkl�

j

(

b
kl
i
(1)

)

= 1 for all i ∈ N . This completes the 
proof.

Proof of Theorem 1

We establish the existence by appying the Schauder-Tychonoff fixed-point theorem, 
which states that any continuous mapping from a compact convex non-empty subset 
of a locally convex topological space to itself has a fixed point (Burton 2005). For all 
i ∈ N , define a mapping hi ∶ [0, 1] → [0, 1] as follows:

Since K(⋅, ⋅) is integrable over both arguments and bidding functions are dif-
ferentiable (hence continuous), hi

(

ti, c
∗(⋅)

)

 is a continuous mapping from 
[0, 1] × [0, 1]n → [0, 1] , for all i ∈ N . Define H(t, c∗(⋅)) ∶ [0, 1]n × [0, 1]n → [0, 1]n 
as follows:

Since hi
(

ti, c
∗(⋅)

)

 is continuous for all i ∈ N , H(t, c∗(⋅)) is also a continuous map-
ping. Next, let C([0, 1]) be the sapce of continuous functions � mapping from [0, 1] 
to [0, 1]n with the sup norm on [0, 1]:

where |⋅| is a norm in Rn and for any x ∈ Rn , |⋅| is defined as |x| = max
i∈N

|

|

xi
|

|

 . Define

c∗�
i
(v) = Φi(v) = 1 −

n−1
∑

k=0

Ck
n−1
∑

l=1

(

P̄
(

b
kl
i
(v);O

kl
i

)

Q
(

N−i∕O
kl
i

))

,

P̄
(

b
kl
i
(v);O

kl
i

)

∶=

k
∑

p=1

((

∫
1

v
k
l�
p

(

b
kl
i
(v)

) ∫
c∗
p
(𝜏)

0

kp(c, 𝜏)dcd𝜏

)

Qkl
p
Q̄kl

p

)

.

hi
(

ti, c
∗(⋅)

)

∶= Φ
(

ti;c
∗(⋅)

)

.

H(t, c∗(⋅)) =
(

h1
(

t1, c
∗(⋅)

)

, h2
(

t2, c
∗(⋅)

)

,… , hn
(

tn, c
∗(⋅)

))�
.

‖�‖ = supv∈[0,1]��(v)�,
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Notice that c∗(⋅) ∈ M . By definition, M is equicontinuous and equibounded. It fol-
lows from the Arzela-Ascoli theorem (Burton 2005) that M is compact. In addition, 
M is certainly convex by definition.

Define a mapping T ∶ M → M as follows:

We next establish that T is a continuous mapping. To this end, let �,� ∈ M . It suf-
fices to show that for any 𝜖 > 0 , there is a � such that ‖𝜙 − 𝜑‖ < 𝛿 implies 
‖T𝜙 − T𝜑‖ < 𝜖 . Since hi

(

ti, c
∗(⋅)

)

 is a continuous mapping from 
[0, 1] × [0, 1]n → [0, 1] , for any 𝜖 > 0 , and ti ∈ [0, 1]n , there exists an 𝛿 > 0 such that 
|

|

|

hi
(

ti,𝜙(⋅)
)

− hi
(

ti,𝜑(⋅)
)

|

|

|

< 𝜖 when ‖𝜙 − 𝜑‖ < 𝛿 , for all i ∈ N . To establish the con-
tinuity of T, notice that for � such that ‖𝜙 − 𝜑‖ < 𝛿 , we have:

It follows from the Schauder-Tychonoff fixed-point theorem that T has a fixed point 
in M. Hence, there exists at least an equlibrium cutoff c∗(⋅) . This completes the 
proof.

Proof of Proposition 3

First, notice that c∗(v) is differentiable. Then, we can applying the envelope theo-
rem in Eq. (5). Notice that vk

(

bk(v)
)

= v in a symmetric equilibrium. Differentiating 
Eq. (5) derives:

M = {� ∈ C([0, 1]) ∶ ‖�‖ ≤ 1}.

(Tc∗)(v) ∶= ∫
v

0

H(t, c∗(⋅))dt.

‖T𝜙 − T𝜑‖ = sup
v∈[0,1]

�

�

�

�

�
v

0

H(t,𝜙(⋅))dt − �
v

0

H(t,𝜑(⋅))dt
�

�

�

�

= sup
v∈[0,1]

�

max
i∈N

�

�

�

�

�
v

0

hi
�

ti,𝜙(⋅)
�

dti − �
v

0

hi
�

ti,𝜑(⋅)
�

dti
�

�

�

�

�

≤ sup
v∈[0,1]

�

max
i∈N �

v

0

�

�

�

hi
�

ti,𝜙(s)
�

− hi
�

ti,𝜑(s)
�

�

�

�

dti

�

< sup
v∈[0,1]

�

max
i∈N �

v

0

𝜖dti

�

= sup
v∈[0,1]

(v𝜖) = 𝜖.
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It follows that c∗�
i
(v) is also differentiable and c∗�(1) = 1 . Last, integrating Eq.  (8) 

from 0 to 1 and noticing c∗(0) = 0 for all i ∈ N , we derive Eq.  (7). To see why 
c∗
i
(0) = 0 , notice that bk(0) = 0 and vk(0) = 0 , since vk(⋅) is the inverse bidding func-

tion. It follows that c∗(0) = 0 . This completes the proof.

Proof of Theorem 2

The existence of the symmetric equilibrium can be established by the Schauder-
Tychonoff fixed-point theorem. Here we only need to prove the uniqueness of the 
symmetric equilibrium. Suppose, by contradiction, that we have two different sym-
metric equilibria x(v) and y(v) . Then we have:

Without loss of generality, suppose x(1) > y(1) , then by the continuity of x(v) and 
y(v) , there exists a v∗ ∈ [0, 1) such that x(v∗) = y(v∗) ∶= c(v∗) and x(𝜏) > y(𝜏) for 
all � ∈ (v∗, 1] by noting that x(0) = y(0) . Consider two mutually exclusive cases. 
First, if k(v, c) > 0 with positive probability measure on (v∗, 1) × (c(v∗), 1) , then 
x(𝜏) > y(𝜏) for all � ∈ (v∗, 1] implies that

c∗�(v) =

[

∫
1

0 ∫
1

c∗(�)

k(c, �)dcd�

]n−1

+

n−1
∑

k=1

(

Ck
n−1

(

∫
v

0 ∫
c∗(�)

0

k(c, �)dcd�

)k(

∫
1

0 ∫
1

c∗(�)

k(c, �)dcd�

)n−1−k
)

,

=

n−1
∑

k=0

(

Ck
n−1

(

∫
v

0 ∫
c∗(�)

0

k(c, �)dcd�

)k(

∫
1

0 ∫
1

c∗(�)

k(c, �)dcd�

)n−1−k
)

=

(

∫
v

0 ∫
c∗(�)

0

k(c, �)dcd� + ∫
1

0 ∫
1

c∗(�)

k(c, �)dcd�

)n−1

=

(

∫
v

0 ∫
c∗(�)

0

k(c, �)dcd� + ∫
1

v ∫
1

c∗(�)

k(c, �)dcd� + ∫
v

0 ∫
1

c∗(�)

k(c, �)dcd�

)n−1

=

(

∫
v

0 ∫
1

0

k(c, �)dcd� + ∫
1

v ∫
1

c∗(�)

k(c, �)dcd�

)n−1

=

(

1 − ∫
1

v ∫
1

0

k(c, �)dcd� + ∫
1

v ∫
1

c∗(�)

k(c, �)dcd�

)n−1

=

(

1 − ∫
1

v ∫
c∗(�)

0

k(c, �)dcd�

)n−1

.

x�(v) =

[

1 − ∫
1

v ∫
x(�)

0

k(�, c)dcd�

]n−1

,

y�(v) =

[

1 − ∫
1

v ∫
y(�)

0

k(�, c)dcd�

]n−1

.
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for all � ∈ (v∗, 1) . It follows that x�(v∗) < y�(v∗) , which is a contradiction to 
x(𝜏) > y(𝜏) for all � ∈ (v∗, 1] . Hence, we must have x(�) = y(�) for all � ∈ (v∗, 1] in 
this case. Second, if k(v, c) > 0 with zero probability measure on (v∗, 1) × (c(v∗), 1) , 
then, by the same argument, x�(�) = y�(�) for all � ∈ (v∗, 1] . It follows from 
x(v∗) = y(v∗) that x(�) = y(�) for all � ∈ (v∗, 1] in this case. Hence, both cases lead 
to a contradiction to x(1) > y(1) . Therefore, we have established that there exists a 
v∗ ∈ [0, 1) , such that x(�) = y(�) for all � ∈ [v∗, 1] . If v∗ = 0 , the proof is complete.

Now, consider an arbitrary closed interval [𝛼, 𝛽] ⊂ [0, 1] . Suppose x(�) = y(�) and 
x(�) = y(�) ; and, without loss of generality, x(𝜏) > y(𝜏) for all � ∈ (�, �). It follows 
from the argument above that x�(𝜏) < y�(𝜏) for � ∈ (�, �) , which is in contradiction 
to x(𝜏) > y(𝜏) for all � ∈ (�, �) . Hence, we have established that x(v) = y(v) for all 
v ∈ [0, 1] . Therefore, the symmetric equilibrium is unique. This completes the proof.

Proof of Corollary 1

We compare the expected payoffs for n and n + 1 bidders as follows:

If c∗
n+1

(v) ≥ c∗
n
(v) , then

which contradicts the assumption that c∗
n+1

(v) ≥ c∗
n
(v) , and thus c∗

n+1
(v) < c∗

n
(v).

Proof of Proposition 4

First, notice that FA = FB implies fA = fB . Next, we establish that c∗
A
(1) > c∗

B
(1) . Sup-

pose, by contradiction, that c∗
A
(1) ≤ c∗

B
(1) . Then, there exists a v∗ ∈ [0, 1) such that 

c∗
A
(v) ≤ c∗

B
(v) for all v ∈ (v∗, 1] . This implies that

∫
x(𝜏)

0

k(𝜏, c)dc > ∫
y(𝜏)

0

k(𝜏, c)dc,

c∗
n
(v) = ∫

v

0

[

1 − ∫
1

t ∫
c∗
n
(�)

0

k(c, �)dcd�

]n−1

dt,

c∗
n+1

(v) = ∫
v

0

[

1 − ∫
1

t ∫
c∗
n+1

(�)

0

k(c, �)dcd�

]n

dt,

∫
v

0

[

1 − ∫
1

t ∫
c∗
n+1

(𝜏)

0

k(c, 𝜏)dcd𝜏

]n

dt < ∫
v

0

[

1 − ∫
1

t ∫
c∗
n
(𝜏)

0

k(c, 𝜏)dcd𝜏

]n−1

dt,

c∗�
A
(v∗) =

[

1 − ∫
1

v∗
f (�)GA

(

c∗
A
(�)

)

d�

]n−1

,

c∗�
B
(v∗) =

[

1 − ∫
1

v∗
f (�)GB

(

c∗
B
(�)

)

d�

]n−1

.
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Since GA < GB and c∗
A
(v) ≤ c∗

B
(v) for all v ∈ (v∗, 1] , we have GA

(

c∗
A
(⋅)
)

< GB

(

c∗
B
(⋅)
)

 . 
It follows from that c∗�

A
(v∗) > c∗�

B
(v∗) . It follows that there exists a v̄∗ > v∗ such that 

c∗
A
(v) > c∗

B
(v) for all v ∈ (v∗, v̄∗) , leading to a contradiction.

Then, we show c∗
A
(v) > c∗

B
(v) for all v ∈ (0, 1] . Without loss of generality, 

assume there exists a v∗ ∈ [0, 1) such that c∗
A
(v∗) = c∗

B
(v∗) and c∗

A
(v) > c∗

B
(v) for all 

v ∈ (v∗, 1] . This implies that c∗�
A
(v∗) > c∗�

B
(v∗) , which means:

In addition, since c∗�
A
(v∗) > c∗�

B
(v∗) , there exists a v∗ < v∗ such that c∗

A
(v) > c∗

B
(v) for 

all v ∈
(

v∗, v∗
)

 and c∗
A

(

v∗
)

= c∗
B

(

v∗
)

 by noticing c∗
A
(0) = c∗

B
(0) . This implies that 

c∗�
A

(

v∗
)

> c∗�
B

(

v∗
)

 . To see this, notice that Since GA < GB and c∗
A
(v) < c∗

B
(v) for all 

v ∈
(

v∗, v∗
)

 , we have GA

(

c∗
A
(⋅)
)

< GB

(

c∗
B
(⋅)
)

 for all v ∈
(

v∗, v∗
)

 , meaning

Hence, we have

This then implies that there exists a ṽ ∈
(

v∗, v∗
)

 such that c∗
A
(v) > c∗

B
(v) for all 

v ∈
(

v∗, ṽ
)

⊂
(

v∗, v∗
)

 , resulting in a contradiction. Hence, c∗
A
(v) > c∗

B
(v) for all 

v ∈ (0, 1] . This completes the proof.

Proof of Proposition 5

We prove this theorem by using the contraction mapping theorem. First, let C([0, 1]) 
be the sapce of continuous functions � mapping from [0, 1] to [0, 1]2 with the sup 
norm on [0, 1]:

∫
1

v∗
f (𝜏)GA

(

c∗
A
(𝜏)

)

d𝜏 < ∫
1

v∗
f (𝜏)GB

(

c∗
B
(𝜏)

)

d𝜏.

∫
v∗

v∗
f (𝜏)GA

(

c∗
A
(𝜏)

)

d𝜏 < ∫
v∗

v∗
f (𝜏)GB

(

c∗
B
(𝜏)

)

d𝜏.

c∗�
A

(

v∗
)

=

[

1 − ∫
1

v∗
f (𝜏)GA

(

c∗
A
(𝜏)

)

d𝜏

]n−1

=

[

1 − ∫
v∗

v∗
f (𝜏)GA

(

c∗
A
(𝜏)

)

d𝜏 − ∫
1

v∗
f (𝜏)GA

(

c∗
A
(𝜏)

)

d𝜏

]n−1

>

[

1 − ∫
v∗

v∗
f (𝜏)GB

(

c∗
B
(𝜏)

)

d𝜏 − ∫
1

v∗
f (𝜏)GB

(

c∗
B
(𝜏)

)

d𝜏

]n−1

=

[

1 − ∫
1

v∗
f (𝜏)GB

(

c∗
B
(𝜏)

)

d𝜏

]n−1

= c∗�
B

(

v∗
)

.
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where where |⋅| is a norm in Rn and for any x ∈ Rn , |⋅| is defined as |x| = max
i∈N

|

|

xi
|

|

 . 
Define

It is certainly that the normed space (M, ‖⋅‖) is a Banach space. Notice that 
c
∗(⋅) =

(

c1(⋅), c2(⋅)
)

∈ M.
Next, define a mapping hi

(

ti, c
∗(⋅)

)

 from [0, 1] × [0, 1]2 → [0, 1] , for all i ∈ {1, 2} 
as follows:

Define H(t, c∗(⋅)) ∶ [0, 1]2 × [0, 1]2 → [0, 1]2 as follows:

Then, we define a mapping T ∶ M → M as follows:

Since gi(⋅) and fi(⋅) , i ∈ {1, 2} , are integrable over both arguments and bidding func-
tions are differentiable (hence continuous), hi

(

ti, c
∗(⋅)

)

 and H(t, c∗(⋅)) are continu-
ous, for all i ∈ N.

It suffices to show that Tc∗ is a contraction mapping. To show this, for any 
x, y ∈ M , where x =

(

x1, x2
)� and y =

(

y1, y2
)� , we have:

‖�‖ = supv∈[0,1]��(v)�,

M = {� ∈ C([0, 1]) ∶ ‖�‖ ≤ 1}.

h1
(

t1, c
∗(⋅)

)

= 1 − ∫
1

v2(b1(t1))
∫

c∗
2
(�)

0

k2(c, �)dcd�

h2
(

t2, c
∗(⋅)

)

= 1 − ∫
1

v1(b2(t2))
∫

c∗
1
(�)

0

k1(c, �)dcd�

H(t, c∗(⋅)) =
(

h1
(

t1, c
∗(⋅)

)

, h2
(

t2, c
∗(⋅)

))�
.

(Tc∗)(v) = �
v

0

H(t, c∗(⋅))dt

=

⎡

⎢

⎢

⎣

∫ v

0

�

1 − ∫ 1

v2(b1(t1))
∫ c∗

2
(�)

0
k2(c, �)dcd�

�

dt1

∫ v

0

�

1 − ∫ 1

v1(b2(t2))
∫ c∗

1
(�)

0
k1(c, �)dcd�

�

dt2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

v − ∫ v

0
∫ 1

v2(b1(t1))
∫ c∗

2
(�)

0
k2(c, �)dcd�dt1

v − ∫ v

0
∫ 1

v1(b2(t2))
∫ c∗

1
(�)

0
k1(c, �)dcd�dt2

⎤

⎥

⎥

⎦
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Hence, we have

where k̄j ∶= supc,v∈[0,1]ki(c, v) . The last inequality holds because 
supc,v∈[0,1]ki(c, v) <

1

∫ 1

0

[

1−vi(bj(v))
]

dv
 for i, j ∈ {1, 2} and i ≠ j . Therefore, T ∶ M → M 

is a contraction mapping. Since M is a complete metric space, it follows from the 
contraction mapping theorem that T has a unique fixed point in M. Hence, functional 
equation c∗ = Tc∗ has a unique solution.

This completes the proof.

Proof of Corollary 2

Suppose the valuations and participation costs are independently distributed, i.e. 
Ki

(

vi, ci
)

= Fi

(

vi
)

Gi

(

ci
)

 for all i ∈ N . The most of the argument in the proof of 
Proposition 5 applies here. However, we could have a weaker sufficient condition. 
To see this, notice that

(Tx)(v) − (Ty)(v) =

� ∫ v

0
∫ 1

v2(b1(t1))
∫ y2(�)

0
k2(c, �)dcd�dt1 − ∫ v

0
∫ 1

v2(b1(t1))
∫ x2(�)

0
k2(c, �)dcd�dt1

∫ v

0
∫ 1

v1(b2(t2))
∫ y1(�)

0
k1(c, �)dcd�dt2 − ∫ v

0
∫ 1

v1(b2(t2))
∫ x1(�)

0
k1(c, �)dcd�dt2

�

=

⎡

⎢

⎢

⎣

∫ v

0

�∫ 1

v2(b1(t1))
∫ y2(�)

x2(�)
k2(c, �)dcd�

�

dt1

∫ v

0

�∫ 1

v1(b2(t2))
∫ y1(�)

x1(�)
k1(c, �)dcd�

�

dt2

⎤

⎥

⎥

⎦

.

‖(Tx)(v) − (Ty)(v)‖ = sup
v∈[0,1]

max
i∈{1,2}

�

�

�

�

�

�
v

0 �
1

vj(bi(ti))
�

yj(𝜏)

xj(𝜏)

kj(c, 𝜏)dcd𝜏dti

�

�

�

�

�

≤ sup
v∈[0,1]

max
i∈{1,2}

�
v

0

�

k̄j
�

1 − vj
�

bi
�

ti
���

sup
s∈[0,1]

max
j∈{1,2}

�

�

�

xj(s) − yj(s)
�

�

�

�

dti

= ‖x(s) − y(s)‖

�

sup
v∈[0,1]

max
i∈{1,2}

�

�
v

0

k̄j
�

1 − vj
�

bi
�

ti
���

dti

��

≤ ‖x(s) − y(s)‖

�

max
i∈{1,2}

�

�
1

0

k̄j
�

1 − vj
�

bi
�

ti
���

dti

��

< ‖x(s) − y(s)‖,
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where ḡj ∶= supc∈[0,1]gi(c) . The last inequality holds because 
supc∈[0,1]gj(c) <

1

∫ 1

0

[

1−F(vj(bi(v)))
]

dv
 for i, j ∈ {1, 2} and i ≠ j . Last, notice that the suf-

ficient conditions when distribution functions are independent and when the suffi-
cient condition in the general case can be rewritten as follows:

It follows that

The sufficient condition when distribution functions are independent holds when the 
sufficient condition in the general case holds.
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‖(Tx)(v) − (Ty)(v)‖ = sup
v∈[0,1]

max
i∈{1,2}

|

|

|

|

|

∫

v

0 ∫

1

vj(bi(ti))

(

Gj
(

yj(�)
)

− Gj
(

xj(�)
))

fj(�)d�dti
|

|

|

|

|

≤ sup
v∈[0,1]

max
i∈{1,2}∫

v

0 ∫

1

vj(bi(ti))
|

|

|

Gj
(

yj(�)
)

− Gj
(

xj(�)
)

|

|

|

fj(�)d�dti

≤ sup
v∈[0,1]

max
i∈{1,2}

(

ḡj ∫

v

0 ∫

1

vj(bi(ti))
|

|

|

yj(�) − xj(�)
|

|

|

fj(�)d�dti

)

≤ sup
v∈[0,1]

max
i∈{1,2}

(

ḡj ∫

v

0 ∫

1

vj(bi(ti))

(

sup
s∈[0,1]

max
j∈{1,2}∫

s

0

|

|

|

yj(u) − xj(u)
|

|

|

du
)

fj(�)d�dti

)

= ‖x(s) − y(s)‖

(

sup
v∈[0,1]

max
i∈{1,2}

(

∫

v

0 ∫

1

vj(bi(ti))
ḡjfj(�)d�dti

))

≤ ‖x(s) − y(s)‖

(

max
i∈{1,2}

(

∫

1

0 ∫

1

vj(bi(ti))
ḡjfj(�)d�dti

))

= ‖x(s) − y(s)‖
(

max
i∈{1,2}

(

ḡj ∫

1

0

[

1 − Fj
(

vj
(

bi
(

ti
)))]

dti

))

< ‖x(s) − y(s)‖,

∫
1

0 ∫
1

vj(bi(v))
ḡjfj(𝜏)d𝜏dv < 1,

∫
1

0 ∫
1

vj(bi(v))
k̄jd𝜏dv < 1.

∫
1

0 ∫
1

vj(bi(v))
ḡjfj(𝜏)d𝜏dv < ∫

1

0 ∫
1

vj(bi(v))
k̄jd𝜏dv < 1.
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